TRUE NO. 1 in STRUCTURE ENGINEERING
REWARD: STAAD CAPABILITY and others:
$ POWERFUL
EXAMPLE OF NON-LINEAR ANALYSYS: $ ONE SET OF
INPUT WITH ONE SET OF OUTPUT IN ONE RUN FOR FINAL RESULTS $ TO OBTAIN
UNLIMITED NUMBER OF LOAD CASES INCLUDING CORRECT NON-LINEAR $ EFFECT OF LOAD
COMBINATIONS.
(Say; 1.4 DL + 1.7 LL + 1.33 WL) $ OTHER
COMPETITOR'S PROGRAM NEXT IN LINE IN CAPABILITY IS TO MANUALLY $ INPUT, MANUALLY
STUDY RESULTS IN SEQUENCES WITH 100 SETS OF INPUT AND $ 100 SETS OF
OUTPUTS OR MORE. $ IT IS A SMALL
JOB HERE FOR USP VS OTHERS, A BIG PROJECT BEYOND $ ECONOMIC
ALLOWABLE. $ $ 3-D GABLE
STRUCTURE WITH GEOMETRICAL AND LOADING SYMMETRY $ THE OUTPUT IS
CONSISTENT IN THE FORM OF 4 OF A KIND OR A PAIR $ THUS IT CAN BE
VISUALLY AND QUICKLY VERIFIED AS A ROUGH CHECK. $ $ CAEINC.
WARRANTS THAT PROGRAM SHALL PERFORM SUBTANTIALLY IN COMPLIANCE $ WITH
SPECIFICATIONS. HERE IS A SMALL TIP ON
HOW YOU CAN VERIFY IT. $ $ THOUGH, THE
EXAMPLE CONTAINS POWERFUL NON-LINEAR THEORY, OBLIQUE COOR- $ NATE AND
SUPPORT MOVEMENTS. $ MANUALLY, THE
RESULT CAN BE CHECKED FOR STATIC EQUILIBRIUM AND $ COMPATABILITY
IN STRAIN VS STRESS RELATIONSHIP. $ A SOPHOREMORE
IN ENGINNERING WITH UNDERSTANDING OF STATICS AND $ STRENGTH OF
MATERIAL CAN CHECK IT. $ COMPLETE
INPUT AND OUTPUT ARE PROVIDED FOR YOUR CHECK. $ A TEST POLIT,
WHO DOES NOT HAVE TO POSSESS THE TECHNOLOGICAL $ CAPABILITY OF
THE PLANE MANUFACTURER AND WHO, IF SUPPLIED WITH A REAL $ COMPLETE
AIR PLANE CAN VERIFY THE PLANE'S CAPABILITY. $ ASK OUR
COMPETITOR TO SUPPLY YOU WITH
COMPLETE INPUT AND OUTPUT. $ DO NO ACCEPT
IMCOMPLETE INPUT AND OUTPUT WITH " AS IS " WARRANTY. $ CHARGE THE
SUPPLY WITH FRAUD AND DECEPTION IF YOU ARE CHEATED EVEN THE $ SUPPLIER SAYS
IT WILL NOT ACCEPT RESPONSIBILITY FOR MISREPRESENTATION $ THAT IS LIKELY
TO TURN OUT TO BE THE TIP OF ICEBURG OF ALL KINDS OF $
MISREPRESENTATIONS. $ MODEL.DATA $ UNIT CONVERSION FACTOR 12. $ NODE
X-VALUE Y-VALUE Z-VALUE
BOUND. CONDITION $ ------ -------
------- ------- ---------------- KPT S
$ BLANK FOR DEFAULT 0. VALUE L1
-15. 0. 0. -6 2 2 2 1 1 1 $
COMMENT AFTER $ SIGN 0.5
.86602 0. -.86602
.5 0. 0. 0. 1. $
LOCAL JOINT DIRECTIONS 0.25
-0.5 -0.75 $ JOINT
DISPLACEMENTS R1
15. 0. 0. -6 2 2 2 1 1 1 0.5
.86602 0. -.86602
.5 0. 0. 0. 1. 0.25
-0.5 -0.75 L2
-15. 10. $ BLANK IS FOR FREE JOINT R2
15. 10. TOP
0. 15. N1
0. 0. -15. -6 2 2 2 1 1 1 0.5
.86602 0. -.86602
.5 0. 0. 0. 1. 0.25
-0.5 -0.75 S1
0. 0. 15.
-6 2 2 2 1 1 1 0.5
.86602 0. -.86602
.5 0. 0. 0. 1. 0.25
-0.5 -0.75 N2
0. 10. -15. S2
0. 10. 15. $ TOP
0. 15. 0.
6 -3 -3 1 1 1 -3 $ TOP
0. 15. 0.
6 -3 -3 1 1 1 0 $ TOP
0. 15. 0.
0 $ TOP
0. 15. 0.
6 -3 -3 -3 -3 -3 0 $ CARRIAGE RETURN
AS END DATA BELOW $ CARRIAGE RETURN
AS END DATA ABOVE ELEMENT BEAM L1 L2
R1 R2
L2
TOP R2
TOP N1
N2 S1 S2
N2
TOP S2
TOP END DATA ELEMENT ONE-WAY T CRI
.787 L1 TOP 0.5 T T-C
-2.927224 R1 TOP T
CRIT .787 N1 TOP T T-C
-2.927224 S1 TOP $ CARRIAGE RETURN
AS END DATA BELOW $ CARRIAGE RETURN
AS END DATA ABOVE ELEMENT TRUSS L1
R2 3 1.0 36. 1. 60. R1
L2 N1
S2 S1 N2
DEACTIVATE $ IF YOUR COMPUTER CAN NOT TAKE IT, USE 0. AS PLACE HOLDER T S-LF 0.00 L1 R1
0. 0. 0. 0. 0. 1. 1. DEAC $ REDUNDANT DEACtivate CAN BE PRESENT WITHOUT ANY EFFECT. REACTIVATE T S-LF
-0.00 L1 R1 , , , , , , 1.,
1. T FS-L
0.005 N1 S1 L2 R2 , , , , , , -1., -1. N2 S2 $ N2 S2 0. 0. 0. 0. 0. -1. -1. $ CARRIAGE RETURN
AS END DATA BELOW $ CARRIAGE RETURN
AS END DATA ABOVE $ LOAD.DATA FILE $ 4 LOADING
CASES, 3 IDENTICAL CASE RESULTS AS A CHECK. $ THIS FILE
CONTAINS THREE LOADING CONDITONS IDENTICALLY TO SHOW $ VARIOUS WAY OF
INPUT LOADS. $ EACH LOADING
CONDITION SERVE AS A CHECK FOR THE OTHER TWO. $ LOADING
CONDITION CASE 4 TO SHOW $ POWERFUL LOAD
COMBINATION TO OBTAIN CORRECT NON-LINAR COMBINATION $ UNMATCHED BY
THOSE PROGRAMS THAT CAN ONLY DO LINEAR COMBINATION. $ $ LOADING
CONDITION 1 $ BIGD 2 JOINT LOAD TOP Y
-10000. END DATA $ POWERFUL LOAD
GENERATION CAPABILITY $ DIRECTION MULTIPLICATION FACTOR SELF LOAD Y -3. END DATA SELF LOAD Y -7. $ TO GENRATE LOAD
FOR EVERY MEMBER IN -Y DIR. AT 10 TIMES OF ITS WEIGHT. $ ALSO ITS OWN
DEAD LOAD END DATA GEN TEMP X
20. END DATA GEN TEMP X
40. $ TO GENERATE
LOAD DUE TO TEMP. INCREASE BY 60 DEGREE FOR EVERY MEMBER. END DATA END DATA $ END DATA $ $ LOADING
CONDITION 2 $ AN IDENTICAL
LOADING SITIATION AS LOADING CONDITION 1 BUT IN DIFFERENT $ FORM AS A CHECK $ JOIt LOAd $TOP Y
-10000. $END DATA $ TO VERIFY IT
WITH INDIVIDUAL MEMBER LOAD AS A CHECK MEMBER LOAD L1
L2 KPT UNIform
Y $ use UNI
command $ AREA X WT/UNIT
VOLUME X CONVERSION FACTOR = WT/UNIT LENGTH
$ 67.6 X 0.000283566 X 12 =
0.230028739 $ UNIFORM FULL
SPAN LOAD $ WT/UNIT
LENGTH X MULTIPLICATION FACTOR = INPUT
LOAD /UNIT LENGTH $ 0.230028739 X 10 = 2.30028739 $ UNIFORM FULL
SPAN LOAD U-F
-2.30028739 $ NO 4th LINE IS
USED TEM
X U-F
60 END DATA R1
R2 KPT UNIform
Y F-U
-2.30028739 $ NO 4th LINE IS
USED TEM
X U-F
60 END DATA L2
TOP KPT UNIform
Y $ use UNI
command -2.30028739 FR
0.0 1.0 $ use
FRactional distance TEM
X U-F
60 END DATA R2
TOP KPT UNIform
Y $ use UNI
command -2.30028739 FR
0.0 1.0 $ use
FRactional distance $ AC
0.0 15.8113883 $
use ACtual distance TEM
X U-F
60 END DATA N1
N2 KPT DIStributed Y $
use DIS command -2.30028739 -2.30028739 FR
0.0 1.0 $ use
FRactional distance TEM
X U-F
60 END DATA S1
S2 KPT DIStributed Y $
use DIS command -2.30028739 -2.30028739 $ AC
0.0 10. $ use ACtual distance FR
0.0 1.0 $ use
FRactional distance TEM
X U-F
60 END DATA N2
TOP KPT $ ACCUMULATIVE
WITH LOAD INPUT MORE THAN ONCE BELOW DIStributed Y $
use DIS command -1.0 -1.0 FR
0.0 1.0 $ use
FRactional distance DIStributed Y $ use
DIS command -1.30028739 -1.30028739 FR
0.0 1.0 $ use
FRactional distance $ ACCUMULATIVE
WITH LOAD INPUT MORE THAN ONCE ABOVE TEM
X U-F
60 END DATA S2
TOP KPT DIStributed Y $ use
DIS command -2.30028739 -2.30028739 $ AC
0.0 15.8113883 $ use ACtual distance FR
0.0 1.0 $ use
FRactional distance TEM
X U-F
60 END DATA L1 TOP TEM
X U-F
60 END DATA R1 TOP
TEM
X U-F
60 END DATA N1 TOP
TEM
X U-F
60 END DATA S1 TOP
TEM
X U-F
60 END DATA L1 R2
UNIform
Y U-F
-0.962115628 TEM
X U-F
60 END DATA R1
L2 UNIform
Y U-F
-0.962115628 TEM
X U-F
60 END DATA N1 S2 UNIform
Y U-F
-0.962115628 TEM
X U-F
60 END DATA S1 N2
UNIform
Y U-F
-0.962115628 TEM
X U-F
60 END DATA L1 R1 UNIform
Y U-F
-0.962115628 TEM
X U-F
60 END DATA N1 S1 UNIform
Y U-F
-0.962115628 TEM
X U-F
60 END DATA L2 R2 UNIform
Y U-F
-0.962115628 TEM
X U-F
60 END DATA N2 S2
UNIform
Y U-F -0.962115628 TEM
X U-F
60 END DATA JOIt LOAd TOP
Y -10000. END DATA END DATA $ LOAD CASE 3 $ POWERFUL LOAD COMBINATION TO OBTAIN CORRECT
NON-LINAR COMBINATION $ UNMATCHED BY THOSE PROGRAMS THAT CAN ONLY
DO LINEAR COMBINATION. LOAd COMbination $ LOAD
COMBINATION LOAD COMBINATION $ CASE
FACTOR CASE FACTOR $ ----
-------- ---- -------- 1
0.4 2 0.6 END DATA END DATA $ LOAD CASE 4 $ POWERFUL LOAD COMBINATION TO OBTAIN CORRECT
NON-LINAR COMBINATION $ UNMATCHED BY THOSE PROGRAMS THAT CAN ONLY
DO LINEAR COMBINATION. LOAd COMbination $ LOAD
COMBINATION LOAD COMBINATION $ CASE
FACTOR CASE FACTOR $ ----
-------- ---- -------- 1
1.4 2
1.6 END DATA END DATA END DATA $ SECT.DATA FILE $ SECTION PROPERTIES OF MEMBERS $ 1 2 3 4 5 6 7 $ --------- --------- --------- ---------
--------- ------- ------- $ I D
NAME AREA IY IZ J DY
DZ $ STELW36X230 67.6 940. 15000. 28.6 35.9 16.47 REPEat 7 MAT2PIPE2 1.07 .666 .666 1.332 2. 2. REPEat 3 STELPIPE6 28.2744 REPEat 7 END DATA END DATA $ ---
All DATA BEYOND 2 end data lines is for human references only. DITTO STELPIPE2 1.07 .666 .666 1.332 2. 2. DITTO DITTO END DATA END DATA TESTNONL 1.07 .666 .666 1.332 2. 2. ROPE2 3.1416 PIPE2 1.07 .666 .666 1.332 2. 2. $ MAT.DATA FILE $ I D
NAME E G ALPHA RHO $ ---------- -------
------- ---------
----------- CNC1COLUMN 3300. 1240. 0.0000055 0.000086806 CNC2GIRDER 3300. 1240. 0.0000055 0.000434030 STEL 29000. 11200.
0.0000065 0.000283565 MAT2 29000.
11200. 0.0000065 0.000000000 $ THIS PORTION UP
IS GOOD $ END DATA $ STELPIPE6 29000. 11200. 0.0000065
0.000000000 STELW24X076 29000. 11200. 0.0000065 0.000283565 STELWT9X38 29000. 11200. 0.0000065 0.000283565 STELPIPE2 29000. 11200. 0.0000065 0.000000000 STELPIPE6 29000. 11200. 0.0000065 0.000283565 ALUMBEAM 10000. 3750. 0.0000128 0.000095486 CONCCOLUMN 3300. 1240. 0.0000055 0.000086806 END DATA $ FOR PLOT NO
NON-LINEAR ALLOW BELOW FOR
USP O K NLINMATERAIL 10000. 3750. 0.0000128 0.0000 NONLCONTINUE 0.01 100. 0.02 100. 0.03
100. NONLCONTINUE 0.06 100. 0.2 100. $ FOR PLOT NO
NON-LINEAR ALLOW ABOVE FOR
USP O K END DATA END DATA STELW24X076 29000. 11200. 0.0000065 0.000283565 STELWT9X38 29000. 11200. 0.0000065 0.000283565 STELPIPE2 29000. 11200. 0.0000065 0.000000000 STELPIPE6 29000. 11200. 0.0000065 0.000283565 NONL 0.01 100. 0.02
130. 0.03 150. NONL 0.06 160. 0.2 160.5 This page was last updated on
Oct./15/2003 and Oct. 19, 2023
.
In one single run, any one who solves the example problem below correctly:
1) Using any one of existing STAAD series Programs:
2) Using any one of existing MIDAS GEN series Programs:
3) US$500.00 for using any other existing competitor's programs for the FIRST entity per each developer upto TEN(10) entities total.
HOW TO CLAIM:
- PrePre_1 makes this graph below -
Note: Loads also includes self-weight loads and temperature loads, which are not shown.
KEYUSP.DAT FILE
1 -5 0 1 36 20 220 110 25 1 5
0 0 2 150 0.04 0.04 0.2
KNODE1: 0, K_NODE IS THE K_NODE OF THE IMMEDIATE ELEMENT AHEAD.
(FOR 1ST ELEMENT: 1ST NODE OF NODE COORDINATE LIST USED)
In this example, KPT is K_NODE for all elements that need one.
$ MODEL.DAT FILE
$ LOAD.DAT FILE
$ SECT.DAT FILE
$ MAT.DAT FILE
Back to the CAE Home Page