CAE SETS (Structure Engineering Turnkey System): True #1

TRUE NO. 1 in STRUCTURE ENGINEERING

REWARD: STAAD CAPABILITY and others:
In one single run, any one who solves the example problem below correctly:

    2) Using any one of existing MIDAS GEN series Programs:
  • All four loading cases: US$1000.00 for the earliest FIVE(5) entities.
    • Extra: Solve one loading case: US$50.00 for the earliest FIVE(5) entities.
    3) US$500.00 for using any other existing competitor's programs for the FIRST entity per each developer upto TEN(10) entities total.
    • 3-1) All four loading cases.
      • Extra: Solve one loading case with loading diagram in ISOMETRIC VIEWS that retain, for any one group of parallel lines, correct proportion in length vs true length to enable you to check visually the correctness of NODE COORDINATES:US$10.00 for the FIRST entity per each developer upto ONE Hundred(100) entities total.

    • 3-2) All four loading cases with loading diagram in ISOMETRIC VIEWS that retain, for any one group of parallel lines, correct proportion in length vs true length to enable you to check visually the correctness of NODE COORDINATES.
HOW TO CLAIM:
  • Obtain your solution from your software if it can do for you.
  • log on to the COMPUTATION CENTER:
  • Go to Your Account Folder. See Home Page: Open a user account
  • Deposit your solution there, identify yourself, what year the software acquired,what version/release, what system used and other pertinent info.
  • People who claim less than US$50.00 can send to email: support@caesets.net
  • CAESETS solution is located at: NEXT FOLDER

    $ POWERFUL EXAMPLE OF NON-LINEAR ANALYSYS:

    $ ONE SET OF INPUT WITH ONE SET OF OUTPUT IN ONE RUN FOR FINAL RESULTS

    $ TO OBTAIN UNLIMITED NUMBER OF LOAD CASES INCLUDING CORRECT NON-LINEAR

    $ EFFECT OF LOAD COMBINATIONS. (Say; 1.4 DL + 1.7 LL + 1.33 WL)

    $ OTHER COMPETITOR'S PROGRAM NEXT IN LINE IN CAPABILITY IS TO MANUALLY

    $ INPUT, MANUALLY STUDY RESULTS IN SEQUENCES WITH 100 SETS OF INPUT AND

    $ 100 SETS OF OUTPUTS OR MORE.

    $ IT IS A SMALL JOB HERE FOR  USP  VS OTHERS, A BIG PROJECT BEYOND

    $ ECONOMIC ALLOWABLE.


    $

    $ 3-D GABLE STRUCTURE WITH GEOMETRICAL AND LOADING SYMMETRY

    $ THE OUTPUT IS CONSISTENT IN THE FORM OF 4 OF A KIND OR A PAIR

    $ THUS IT CAN BE VISUALLY AND QUICKLY VERIFIED AS A ROUGH CHECK.

    $

    $ CAEINC. WARRANTS THAT PROGRAM SHALL PERFORM SUBTANTIALLY IN COMPLIANCE

    $ WITH SPECIFICATIONS.  HERE IS A SMALL TIP ON HOW YOU CAN VERIFY IT.

    $

    $ THOUGH, THE EXAMPLE CONTAINS POWERFUL NON-LINEAR THEORY, OBLIQUE COOR-

    $ NATE AND SUPPORT MOVEMENTS.

    $ MANUALLY, THE RESULT CAN BE CHECKED FOR STATIC EQUILIBRIUM AND

    $ COMPATABILITY IN STRAIN VS STRESS RELATIONSHIP.

    $ A SOPHOREMORE IN ENGINNERING WITH UNDERSTANDING OF STATICS AND

    $ STRENGTH OF MATERIAL CAN CHECK IT.

    $   COMPLETE    INPUT AND OUTPUT ARE PROVIDED FOR YOUR CHECK.

    $ A TEST POLIT, WHO DOES NOT HAVE TO POSSESS THE TECHNOLOGICAL

    $ CAPABILITY OF THE PLANE MANUFACTURER AND WHO, IF SUPPLIED WITH A REAL

    $  COMPLETE  AIR PLANE CAN VERIFY THE PLANE'S CAPABILITY. 

    $ ASK OUR COMPETITOR TO SUPPLY YOU WITH   COMPLETE   INPUT AND OUTPUT.

    $ DO NO ACCEPT IMCOMPLETE INPUT AND OUTPUT WITH " AS IS " WARRANTY.

    $ CHARGE THE SUPPLY WITH FRAUD AND DECEPTION IF YOU ARE CHEATED EVEN THE

    $ SUPPLIER SAYS IT WILL NOT ACCEPT RESPONSIBILITY FOR MISREPRESENTATION

    $ THAT IS LIKELY TO TURN OUT TO BE THE TIP OF ICEBURG OF ALL KINDS OF

    $ MISREPRESENTATIONS.

    - PrePre_1 makes this graph below -
    Note: Loads also includes self-weight loads and temperature loads, which are not shown.


    KEYUSP.DAT FILE

    1 -5 0 1 36 20 220 110 25 1 5 0 0 2 150 0.04 0.04 0.2

    KNODE1: 0, K_NODE IS THE K_NODE OF THE IMMEDIATE ELEMENT AHEAD.
                        (FOR 1ST ELEMENT: 1ST NODE OF NODE COORDINATE LIST USED)
    In this example, KPT is K_NODE for all elements that need one.

    $ MODEL.DAT FILE

    $ MODEL.DATA

    $

      UNIT CONVERSION FACTOR 12.

    $  NODE   X-VALUE  Y-VALUE  Z-VALUE  BOUND. CONDITION

    $ ------  -------  -------  -------  ----------------

       KPT                                 S  $ BLANK FOR DEFAULT 0. VALUE

       L1       -15.    0.        0.      -6 2 2 2 1 1 1  $ COMMENT AFTER $ SIGN

       0.5  .86602  0.    -.86602  .5  0.     0.  0.  1.  $ LOCAL JOINT DIRECTIONS

       0.25  -0.5  -0.75                                  $ JOINT DISPLACEMENTS

       R1        15.    0.        0.      -6 2 2 2 1 1 1

       0.5  .86602  0.    -.86602  .5  0.     0.  0.  1.

       0.25  -0.5  -0.75

       L2       -15.    10.                   $ BLANK IS FOR FREE JOINT

       R2        15.    10.

       TOP        0.    15.

       N1         0.     0.    -15.       -6 2 2 2 1 1 1

       0.5  .86602  0.    -.86602  .5  0.     0.  0.  1.

       0.25  -0.5  -0.75

       S1         0.     0.     15.       -6 2 2 2 1 1 1

       0.5  .86602  0.    -.86602  .5  0.     0.  0.  1.

       0.25  -0.5  -0.75

       N2         0.    10.    -15.       

       S2         0.    10.     15.       

    $  TOP        0.    15.      0.       6 -3 -3 1 1 1 -3

    $  TOP        0.    15.      0.       6 -3 -3 1 1 1 0

    $  TOP        0.    15.      0.       0

    $  TOP        0.    15.      0.       6  -3 -3 -3 -3 -3 0

    $ CARRIAGE RETURN AS END DATA BELOW

     

    $ CARRIAGE RETURN AS END DATA ABOVE

    ELEMENT BEAM

     L1  L2

     R1  R2

     L2  TOP  

     R2  TOP 

     N1  N2 

     S1  S2

     N2  TOP 

     S2  TOP

    END DATA

    ELEMENT ONE-WAY

     T  CRI .787 L1 TOP  0.5  

     T  T-C -2.927224 R1 TOP  

     T  CRIT .787 N1 TOP  

     T  T-C -2.927224 S1 TOP  

    $ CARRIAGE RETURN AS END DATA BELOW

     

    $ CARRIAGE RETURN AS END DATA ABOVE

    ELEMENT TRUSS

        L1  R2  3  1.0  36. 1.  60.

        R1  L2 

        N1  S2

        S1 N2 

    DEACTIVATE

     $ IF YOUR COMPUTER CAN NOT TAKE IT, USE  0. AS PLACE HOLDER

    T S-LF 0.00 L1 R1 0. 0. 0. 0. 0. 1. 1.

    DEAC         $ REDUNDANT DEACtivate  CAN BE PRESENT WITHOUT ANY EFFECT.

    REACTIVATE

    T  S-LF  -0.00  L1 R1 , , , , , , 1., 1. 

    T  FS-L   0.005 N1 S1        

      L2 R2 , , , , , , -1., -1.

      N2 S2

    $  N2 S2 0. 0. 0. 0. 0. -1. -1.

    $ CARRIAGE RETURN AS END DATA BELOW

     

     

    $ CARRIAGE RETURN AS END DATA ABOVE


    $ LOAD.DAT FILE

    $ LOAD.DATA FILE

    $ 4 LOADING CASES, 3 IDENTICAL CASE RESULTS AS A CHECK.

    $ THIS FILE CONTAINS THREE LOADING CONDITONS IDENTICALLY TO SHOW

    $ VARIOUS WAY OF INPUT LOADS.

    $ EACH LOADING CONDITION SERVE AS A CHECK FOR THE OTHER TWO.

    $ LOADING CONDITION CASE 4 TO SHOW

    $ POWERFUL LOAD COMBINATION TO OBTAIN CORRECT NON-LINAR COMBINATION

    $ UNMATCHED BY THOSE PROGRAMS THAT CAN ONLY DO LINEAR COMBINATION.

    $

    $ LOADING CONDITION  1

    $  BIGD 2

      JOINT LOAD

    TOP   Y  -10000.

    END DATA

    $ POWERFUL LOAD GENERATION CAPABILITY

    $           DIRECTION  MULTIPLICATION FACTOR

    SELF LOAD     Y          -3.

    END DATA

    SELF LOAD     Y          -7.

    $ TO GENRATE LOAD FOR EVERY MEMBER IN -Y DIR. AT 10 TIMES OF ITS WEIGHT.

    $ ALSO ITS OWN DEAD LOAD

    END DATA

     GEN TEMP X  20.

    END DATA

     GEN TEMP X  40.

    $ TO GENERATE LOAD DUE TO TEMP. INCREASE BY 60 DEGREE FOR EVERY MEMBER.

    END DATA

    END DATA

    $ END DATA

    $

    $ LOADING CONDITION  2

    $ AN IDENTICAL LOADING SITIATION AS LOADING CONDITION 1 BUT IN DIFFERENT

    $ FORM AS A CHECK

    $ JOIt LOAd

    $TOP   Y  -10000.

    $END DATA

    $ TO VERIFY IT WITH INDIVIDUAL MEMBER LOAD AS A CHECK

     MEMBER LOAD

     L1  L2  KPT

      UNIform   Y                   $ use  UNI  command

    $ AREA X WT/UNIT VOLUME X CONVERSION FACTOR = WT/UNIT LENGTH 

    $ 67.6 X  0.000283566   X       12  =            0.230028739

    $ UNIFORM FULL SPAN LOAD

    $ WT/UNIT LENGTH  X MULTIPLICATION FACTOR = INPUT LOAD /UNIT LENGTH

    $   0.230028739   X  10                   =  2.30028739

    $ UNIFORM FULL SPAN LOAD

      U-F   -2.30028739

    $ NO 4th LINE IS USED

      TEM   X

      U-F   60

     END DATA

     R1  R2  KPT

      UNIform   Y

      F-U   -2.30028739

    $ NO 4th LINE IS USED

      TEM   X

      U-F   60

      END DATA

     L2  TOP    KPT

      UNIform   Y                   $ use  UNI  command

      -2.30028739  

       FR   0.0          1.0        $ use  FRactional distance

      TEM   X

      U-F   60

      END DATA

     R2  TOP    KPT

      UNIform   Y                   $ use  UNI  command

      -2.30028739  

       FR   0.0          1.0        $ use  FRactional distance

    $   AC   0.0         15.8113883         $ use  ACtual distance

      TEM   X

      U-F   60

      END DATA

     N1  N2  KPT

      DIStributed       Y           $ use  DIS  command

      -2.30028739     -2.30028739

       FR   0.0          1.0        $ use  FRactional distance

      TEM   X

      U-F   60

      END DATA

     S1  S2  KPT

      DIStributed       Y           $ use  DIS  command

      -2.30028739     -2.30028739

    $  AC   0.0         10.         $ use  ACtual distance

       FR   0.0          1.0        $ use  FRactional distance

      TEM   X

      U-F   60

      END DATA

     N2  TOP    KPT

    $ ACCUMULATIVE WITH LOAD INPUT MORE THAN    ONCE  BELOW

      DIStributed       Y           $ use  DIS  command

      -1.0            -1.0

       FR   0.0          1.0        $ use  FRactional distance

      DIStributed       Y           $ use  DIS  command

      -1.30028739     -1.30028739

       FR   0.0          1.0        $ use  FRactional distance

    $ ACCUMULATIVE WITH LOAD INPUT MORE THAN    ONCE  ABOVE

      TEM   X

      U-F   60

      END DATA

     S2  TOP    KPT

      DIStributed       Y           $ use  DIS  command

      -2.30028739     -2.30028739

    $  AC   0.0         15.8113883         $ use  ACtual distance

       FR   0.0          1.0        $ use  FRactional distance

      TEM   X

      U-F   60

     END DATA

     L1 TOP

      TEM   X

      U-F   60

      END DATA

     R1 TOP  

      TEM   X

      U-F   60

      END DATA

     N1 TOP  

      TEM   X

      U-F   60

      END DATA

     S1 TOP  

      TEM   X

      U-F   60

      END DATA

     L1  R2

      UNIform   Y

      U-F     -0.962115628

      TEM   X

      U-F   60

      END DATA

     R1  L2 

      UNIform   Y

      U-F     -0.962115628

      TEM   X

      U-F   60

      END DATA

     N1  S2

      UNIform   Y

      U-F     -0.962115628

      TEM   X

      U-F   60

      END DATA

     S1 N2 

      UNIform   Y

      U-F     -0.962115628

      TEM   X

      U-F   60

      END DATA

     L1 R1

      UNIform   Y

      U-F     -0.962115628

      TEM   X

      U-F   60

      END DATA

     N1 S1

      UNIform   Y

      U-F     -0.962115628

      TEM   X

      U-F   60

      END DATA

     L2 R2

      UNIform   Y

      U-F     -0.962115628

      TEM   X

      U-F   60

      END DATA

     N2 S2        

      UNIform   Y

      U-F     -0.962115628

      TEM   X

      U-F   60

      END DATA

      JOIt LOAd

     TOP   Y  -10000.

     END DATA

     END DATA

     $ LOAD CASE 3

     $ POWERFUL LOAD COMBINATION TO OBTAIN CORRECT NON-LINAR COMBINATION

     $ UNMATCHED BY THOSE PROGRAMS THAT CAN ONLY DO LINEAR COMBINATION.

     LOAd COMbination

     $ LOAD  COMBINATION  LOAD COMBINATION

     $ CASE    FACTOR     CASE   FACTOR

     $ ----   --------    ----  --------

        1       0.4        2      0.6

     END DATA

     END DATA

     $ LOAD CASE 4

     $ POWERFUL LOAD COMBINATION TO OBTAIN CORRECT NON-LINAR COMBINATION

     $ UNMATCHED BY THOSE PROGRAMS THAT CAN ONLY DO LINEAR COMBINATION.

     LOAd COMbination

     $ LOAD  COMBINATION  LOAD COMBINATION

     $ CASE    FACTOR     CASE   FACTOR

     $ ----   --------    ----  --------

        1       1.4        2      1.6

     END DATA

     END DATA

     END DATA



    $ SECT.DAT FILE

    $ SECT.DATA FILE

    $     SECTION PROPERTIES OF MEMBERS

    $         1         2         3         4         5        6       7

    $     --------- --------- --------- --------- --------- ------- -------

    $     I D  NAME   AREA       IY        IZ         J       DY      DZ

    $      

         STELW36X230  67.6      940.      15000.     28.6    35.9    16.47

    REPEat 7

         MAT2PIPE2    1.07       .666         .666     1.332    2.    2.

    REPEat 3

         STELPIPE6   28.2744

    REPEat 7

    END DATA

    END DATA

    $  ---  All DATA BEYOND 2 end data lines is for human references only.

    DITTO    

         STELPIPE2    1.07       .666         .666     1.332    2.    2.

    DITTO    

    DITTO    

    END DATA

    END DATA

         TESTNONL   1.07       .666         .666     1.332    2.    2.

         ROPE2      3.1416

         PIPE2      1.07       .666         .666     1.332    2.    2.


    $ MAT.DAT FILE

    $ MAT.DATA FILE

    $  I D  NAME       E         G         ALPHA      RHO

    $ ----------    -------   -------   --------- -----------     

      CNC1COLUMN      3300.     1240.   0.0000055 0.000086806

      CNC2GIRDER      3300.     1240.   0.0000055 0.000434030

      STEL           29000.    11200.   0.0000065 0.000283565

      MAT2           29000.    11200.   0.0000065 0.000000000

    $ THIS PORTION UP IS GOOD

    $ END DATA

    $ STELPIPE6      29000.    11200.   0.0000065 0.000000000

      STELW24X076    29000.    11200.   0.0000065 0.000283565

      STELWT9X38     29000.    11200.   0.0000065 0.000283565

      STELPIPE2      29000.    11200.   0.0000065 0.000000000

      STELPIPE6      29000.    11200.   0.0000065 0.000283565

      ALUMBEAM       10000.     3750.   0.0000128 0.000095486

      CONCCOLUMN      3300.     1240.   0.0000055 0.000086806

      END DATA

    $ FOR PLOT   NO   NON-LINEAR ALLOW BELOW  FOR USP  O K

      NLINMATERAIL   10000.     3750.   0.0000128 0.0000

      NONLCONTINUE   0.01 100.  0.02 100.   0.03  100.

      NONLCONTINUE   0.06 100.  0.2  100.

    $ FOR PLOT   NO   NON-LINEAR ALLOW ABOVE  FOR USP  O K

      END DATA

      END DATA

      STELW24X076    29000.    11200.   0.0000065 0.000283565

      STELWT9X38     29000.    11200.   0.0000065 0.000283565

      STELPIPE2      29000.    11200.   0.0000065 0.000000000

      STELPIPE6      29000.    11200.   0.0000065 0.000283565

          NONL       0.01 100.  0.02 130.   0.03  150.

          NONL       0.06 160.  0.2  160.5


    Back to the CAE Home Page

    This page was last updated on Oct./15/2003 and Oct. 19, 2023 .